~

A
Frreeceere ||||

EEEEEEEEEEEE

The Berkeley UPC Compiller:
Implementation and Performance

Wei Chen
the LBNL/Berkeley UPC Group

Unified Parallel C at LBNL/UCB

-~ . Overview of Berkeley UPC
ceseen) { Compiler

Compilation all
encapsulated in one
“‘upcc” command

>

41 Platform-
independent Translator Generated C Code
Network- : Compiler-
independent Berkeley UPC Runtime System independent

Language-

independen
t v
Network Hardware v

Two Goals: Portability and High-Performance

Unified Parallel C at LBENL/UCB

5

% A Layered Design

- UPC to C translator: Translates UPC code into C, inserting
calls to the runtime library for parallel features

« UPC runtime: Allocate/initialize shared data, perform operations
on pointer-to-shared
« GASNet: An uniform interface for low-level communication
primitives
« Portable:
- Cis our intermediate language
- GASNEet itself has a layered design with a small core
« High-Performance:
- Native C compiler optimizes serial code
- Translator can perform communication optimizations
- GASNet can access network directly

| Unified Parallel C at LENL/UCB |

~ Implementing the UPC to C

| A
Translator
@urce File - Based on Open64
v
UPC front end « Supports both 32/64 bit platforms

¥
Whirl w/ shared types
v

Backend lowering
v

<Whirl w/ runtime calls

.
Whirl2c

v

<ANSI-compliant C Code™

Unified Parallel C at LBNL/UCB

» Designed to incorporate existing
optimization framework in open64
(LNO, IPA, WOPT)

« Communicate with runtime via a
standard API and configuration files

* Will present our implementation in
Open64 workshop in March

~

' A
rrreeee

||||
BERKELEY | -N=]

Components in the Translator

* Front end:
- UPC extensions to C:

shared qualifier, block size, forall loops, builtin functions
and values (THREADS, memget, etc), strict/relaxed

- Parses and type-checks UPC code, generates Whirl, with
UPC-specific information available in symbol table

« Backend:

- Transform shared read and writes into calls into runtime
library. Calls can be blocking/non-blocking/bulk/register-
based

- Apply standard optimizations and analyses

 Whirl2c:

- Convert Whirl back to C, with shared variables declared as
opaque pointer-to-shared types

- Special handling for static user data

| Unified Parallel C at LENL/UCB |

Pointer-to-Shared: Phases

~
A\
rreeeer

||||
BERKELEY | -N=]

« UPC has three different kinds of distributed arrays:
- Block-cyclic:
shared [4] double a [n];
- Cyclic:)
shared double a [n];
- Indefinite (local to allocating thread):
shared [] double *a = (shared [] double *) upc_alloc(n);
* A pointer needs a “phase” to keep track of where itis in a block
- Source of overhead for updating and dereferencing
« Special case for “phaseless” pointers
- Cyclic pointers always have phase 0
- Indefinite blocked pointers only have one block
- Don'’t need to keep phase in pointer operations for cyclic and
indefinite
- Don’t need to update thread id for indefinite

Y
ssoljoseyd

| Unified Parallel C at LENL/UCB |

~

block
size

Thread O hread 1

- Thread N -1
Address | Thread Phase
addr 0 2

Unified Parallel C at LBNL/UCB

Shared
Memory

. Pointer-to-Shared

' A
rrreeee

(Representation

BERKELEY LAB

« Important to performance, since it affects all shared
operations
« Shared pointer representation trade-offs
- Use of scalar types rather than a struct may improve

backend code quality
- Faster pointer manipulation, e.g., ptr+int as well as
dereferencing
- These are important in C, because array reference are

based on pointers
- Smaller pointer size may help performance
- Use of packed 8-byte format may allow pointers to reside in
a single register
- But very large machines may require a longer representation

| Unified Parallel C at LENL/UCB |

5

' \
rreecreer
BE

Let the Users Decide

« Compiler offers two pointer-to-shared configurations

Packed 8-byte format that gives better
performance

Struct format for large-scale programs

« Portability and performance balance in UPC compiler

Representation is hidden in the runtime layer
Can easily switch at compiler installation time

Modular design means easy to add new
representations (packed format done in one day)

May have a different representation for phaseless
pointers (skipping the phase field)

| Unified Parallel C at LENL/UCB |

~

. A
Frreeceere ‘||||

 Testbed
- Compagqg AlphaServer in ORNL, with Quadrics conduit
- Compaqg C compiler for the translated C code
* Microbenchmarks
- Measures the cost of UPC language features and constructs
- Shared pointer arithmetic, forall, allocation, etc
- Vector addition: no remote communication
« Performance-tuning benchmarks (Costin)
- Measure the effectiveness of various communication optimizations
- Scale: test message pipelining and software pipelining
* NAS Parallel Benchmarks (Parry)
- EP: no communication
- 1S: large bulk memory operations
- MG: bulk memput

Preliminary Performance

| Unified Parallel C at LENL/UCB |

N Performance of Shared Pointer

| _,\
creeerd] Arithmetic

Cost of Shared Pointer Operations

100 —_
1 cycle =
90 -
— = ptr + int —- struct 1 5nS
80 | W ptr + int -- packed
» 70 B ptr - ptr -- struct
= O ptr - ptr -- packed
“g? 60 1 = ptr equality -- struct
° 50 O ptr equality -- packed
D
€ 40
=
= 30
20 —
10 ——
(0}

generic cyclic indefinite regular

Pointer Type

* Phaseless pointer an important optimization
* Indefinite pointers almost as fast as regular C pointers
» Packing also helps, especially for pointer and int addition

Unified Parallel C at LBNL/UCB

ceeee) : Comparison with HP UPC v1.7

Pointer-to-shared operations
50
45
40 =
8 35 1] O ptr + int -- HP 1 CyCIe
S 30 H ptr + int -- Berkeley 1.9ns
% o5 || O ptr - ptr -- HP
5 20 L O ptr -ptr -- Berkeley
-g 15 L W ptr == ptr -- HP
2 10 L O ptr == ptr-- Berkeley
sl e
0
generic cyclic indefinite
type of pointer

« HP a little faster, due to it generating native code
« Gap for addition likely smaller with further hand-tuning

Unified Parallel C at LENL/UCB |

’\| » Cost of Shared Memory Access

Cost of Shared Local Memory Access Cost of shared remote access
© gy, 750 6000
0 o)
g = 5000
2 o o 2 4000
o 500 o0
> <
¢ 300 240 O » 2000
L - C
Q 200 O 1000
1) **
“6 102 8 7 O I I I
I I I
% :
HPread Berkeley = HP write Berkeley HP read Berkeley HP write Berk.eley
read Write read write

 Local accesses somewhat slower than private accesses
* HP has improved local access performance in new version

 Remote accesses worse than local, as expected
* Runtime/GASNet layering for portability is not a problem

Unified Parallel C at LENL/UCB |

”\| ,;\,| UPC Loops

« UPC has a “forall” construct for distributing
computation
shared int v1[N], v2[N], v3[N];
upc_forall(i=0; i < N; i++; &v3][i])
v3[i] = v2[i] + v1][i];

 Two kinds of affinity expressions:

- Integer (compare with thread id)

- Shared address (check the affinity of address)
« Affinity tests are performed on every iteration

Affinity Exp | None integer shared address

cycles 6 17 10

| Unified Parallel C at LENL/UCB |

~

' A
Freeeer ‘m

Overhead of Dynamic Allocation

time for upc_all_alloc,size = 1KB

600 e
(/2] e
'g 500 -
9 400 —
4 300 - —&—— berkeley upc
S Pl --=--HP upc
£ 200 -
(V] i
£ 100 +—~ ———%
ke /f * "

1 3 5 7 9
number of threads

 Faster than HP, due to the benefit of Active Messages

* Shared allocation functions easy to implement, and scale well

« Should perform better once the collectives (broadcast)are added to
GASNet

- Shared locks also easy to implement using AM

Unified Parallel C at LBNL/UCB

R Overhead of Local Shared

recee p Accesses
Vector Addition Optimizations on Vector Add
8 ~= HP 1000
7 § o
T 6 o) /
§ 5 2 100 -4~ Naive
04 Berkeley T e optd
] . 0 B -
;33 ; : cyclic 0 10 T o2
2 . v //::_ Y SERRERII *
1 . @
0L " ‘ Berkeley S 1 | | | |
0 5 10 blocked 2 4 6 8 10
number of threads number of threads

» Berkeley beats HP, but neither performs well

 Culprit: cost of affinity test and pointer-to-shared

 Privatizing local shared accesses improves
performance by an order of magnitude

Unified Parallel C at LENL/UCB |

5

_— Observations on the Results

||||
BERKELEY | -N=]

« Acceptable overhead for shared memory operations
and access latencies

* Phaseless pointers are good for performance

« Packed representation is also effective

* (Good performance compared to HP UPC 1.7

« Still lots of opportunities for optimizations

Unified Parallel C at LENL/UCB |

5

S

rreereere

||||

Compiler Status

Targeting a 3/31 release that is fully UPC 1.1 compliant
Compiler builds with gcc 2.96 and 3.2 on Linux
- remote compilation option for other platforms

Runtime and GASNet tested on AlphaServer
(Quadrics), Linux (Myrinet), and IBM SP (LAPI)

Successfully built and run NAS UPC benchmarks (EP,
IS, CG, MG) ~ 2000 lines of code

A paper submitted for publication

| Unified Parallel C at LENL/UCB |

~

' A
rrreeee

BERKELEY LAB

Challenges That We Solved

- Portability is non-trivial to achieve

Double include: translator can’t simply output
declarations in system headers, because the
runtime/GASNet may #include it

Porting the translator: Open64 originally only compiled
for gcc2.96

IA-32 Support: Open64 was designed to generate 1A-64
code

Preprocessor issues: Open64’s C front end was not
ANSI-compliant

Static User Data: Elaborate scheme to allocate and
initialize static global data

Memory Management, Machine-specific information,
and many more.

Unified Parallel C at LENL/UCB |

~

' A
rrreeee

||||
BERKELEY | -N=]

Future Work: Optimizations

« Overlapping Communication with Computation
« Separate get(), put() as far as possible from sync()
* Privatizing Accesses for Local Memory
« Can be done in conjunction with elimination of forall
loop affinity tests
* Message Pipelining
« Effectiveness varies based on the network
» Message Coalescing/Aggregation/Vectorization
* Reduce the number of small message traffic
 Prefetching and Software Caching
« Difficulty is in understanding the UPC memory model

| Unified Parallel C at LENL/UCB

5

' A
rrreeee

+ Future Work: Functionality

* Pthread and System V Shared Memory Support

* Port the translator to more platforms

 Debugging Support

 Merge with ORC (Open Research Compiler) to get
new optimizations and bug fixes

 (Possible) Native Code Generation for IA64

Unified Parallel C at LBNL/UCB

